
1
1

EURO 2006
Reykjavik, Iceland, July 4, 2006

Solving Difficult
MIP Problems using
GAMS and Condor
Michael R. Bussieck
MBussieck@gams.com

GAMS Software GmbH
http://www.gams.de

Michael C. Ferris
Ferris@cs.wisc.edu

University of Wisconsin-Madison
http://www.cs.wisc.edu/~ferris/

2
2

GAMS Development / GAMS Software

• Roots: Research project
World Bank 1976

• Pioneer in Algebraic
Modeling Systems
used for economic modeling

• Went commercial in 1987
• Offices in Washington, D.C

and Cologne
• Professional software tool

provider
• Operating in a segmented

niche market
• Broad academic &

commercial user base
and network

3
3

Application* Areas:

*

* Illustrative examples in the GAMS Model Library

• Agricultural Economics
• Chemical Engineering
• Econometrics
• Environmental Economics
• Finance
• International Trade
• Macro Economics
• Management Science/OR
• Micro Economics

• Applied General Equilibrium
• Economic Development
• Energy
• Engineering
• Forestry
• Logistics
• Military
• Mathematics
• Physics

4
4

GAMS at a Glance
General Algebraic Modeling System:

Algebraic Modeling Language,
Integrated Solver, Model
Libraries, Connectivity- &
Productivity Tools

Design Principles:
• Balanced mix of declarative and

procedural elements
• Open architecture and interfaces

to other systems
• Different layers with separation of:

– model and data
– model and solution methods
– model and operating system
– model and interface

5
5

System Overview

Connectivity Tools
• Uniform Data

Exchange:
– ASCII
– GDX (ODBC,

SQL, XLS, XML)
• GDX Tools
• Data API
• Ext. programs

– EXCEL
– MATLAB
– GNUPLOT, ...
– C, Delphi, ...

Solvers
LP-MIP-QCP-MIQCP-NLP-MINLP-CNS-
MCP-MPEC
MPSGE, global, and stochastic optimization

Productivity Tools
• Integrated Development

Environment (IDE)
• Model Debugger and

Profiler
• Model Libraries
• Data Browser
• Charting Engine
• Benchmarking
• Deployment System
• Quality Assurance and

Testing

User Interfaces

GAMS Language Compiler
and Execution System

API/BatchInteractive

BARON, COIN, CONOPT,
CPLEX, DECIS, DICOPT,
KNITRO, LGO,MINOS, MOSEK,
OQNLP, PATH, SNOPT, XA,
XPRESS, …

6
6

What’s New???
• Improvements on all frontiers

– Connectivity Tools
• Databases
• Spreadsheets
• Specialized Visualization Tools (e.g. VEDA)

– Productivity Tools
• IDE Improvements
• Charting Engine

– Interfaces
• Using GAMS from Application Environments

– Solver Interfacing
• Branch-and-Cut-and-Heuristic (BCH) Facility
• Grid Computing

7
7

What is Grid Computing?

A pool of connected computers managed and
available as a common computing resource

• Effective sharing of CPU power

• Massive parallel task execution

• Scheduler handles management tasks

• E.g. Condor, Sun N6 Grid Engine, Globus

• Can be rented or owned in common

• Licensing & security issues

8
8

Typical Application for GAMS

mymodel.solvelinkmymodel.solvelink=3;=3;
loop(scenarioloop(scenario,,
demand=demand=sdemand(scenariosdemand(scenario); cost=); cost=scost(scenarioscost(scenario););
solve solve mymodelmymodel min min objobj using using minlpminlp;;
h(scenarioh(scenario)=)=mymodel.handlemymodel.handle););

RepeatRepeat
loop(scenario$h(scenarioloop(scenario$h(scenario),),
if(handlestatus(h(scenarioif(handlestatus(h(scenario))=2,))=2,
mymodel.handlemymodel.handle==h(scenarioh(scenario);); h(scenarioh(scenario)=0;)=0;
execute_loadhandleexecute_loadhandle mymodelmymodel;;
report(scenarioreport(scenario)=)=var.lvar.l););

if(card(hif(card(h), execute 'sleep 1');), execute 'sleep 1');
until until card(hcard(h)=0 or)=0 or timeelapsedtimeelapsed > 100;> 100;

report(scenarioreport(scenario) =) = var.lvar.l););report = report = var.lvar.l;;

demand=42; cost=14;demand=42; cost=14;

& Grid

9
9

Massively Parallel MIP
• MIP/B&C Algorithm ideal to parallelize

– Master/Worker Paradigm (process nodes in
parallel)
• Software: FATCOP/Condor, BCP/PVM

– A-priori subdivision into n independent problems
• Seymour problem solved that way

– Open Pit Mining (openpit in GAMS Model library)
– Partitioning integer variables to subdivide

model into into 4096 sub-problems
– Experiments (Ferris) at UW using Condor

Pool

10
10

Condor

11
11

Results for 4096 MIPS on Condor Grid
• Submission started Jan 11,16:00
• All jobs submitted by Jan 11, 23:00
• All jobs returned by Jan 12, 12:40

– 20 hours wall time, 5000 CPU hours
– Peak number of CPU’s: 500

12
12

Nodes Best Cuts/Nodes Best Cuts/
Node Left Objective Node Left Objective IInfIInf Integer Best Node Integer Best Node ItCntItCnt GapGap

0 0 29.6862 64 29.6862 1650 0 29.6862 64 29.6862 165
100 37 17.0000 14 25.0000 2230100 37 17.0000 14 25.0000 2230
200 70 21.8429 22 24.0000 4022200 70 21.8429 22 24.0000 4022

Problems with a-priori Partitioning
• 99% of sub-problems very easy to solve
• 1% (almost) as difficult as the original problem

• How can we find n sub-problems with similar (but reduced)
level of difficulty?
– B&C Code keeps a list of open/unexplored nodes
– Problem-bounds of these open nodes represent

partitioning of the original problem

• GAMS/CPLEX Option dumptreedumptree nn creates n bound files

13
13

How difficult is a sub-problem?
• What is a good estimate for how difficult a sub-problem is?

– Look at the LP value of a sub-problem
• The smaller the LP value (assuming minimization)

the more difficult the sub-problem

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0 500 1000 1500 2000 2500

Series1
Series2

• Cplex Default

• Cplex Strong
Branching

• Spend more
time in sub-
problem
generation

14
14

Putting it all together
Generate Generate nn subsub--problems using GAMS/CPLEX with problems using GAMS/CPLEX with dumpoptdumpopt n;n;

loop(loop(nn,,
load load nnth bound file;th bound file;
generate and submit generate and submit nnth subth sub--problemproblem

););

RepeatRepeat
loop(loop(nn$(not$(not collected),collected),

if (if (n n finished, finished,
load load nnthth--solution and mark solution and mark nn as collected));as collected));

sleep some time;sleep some time;
Until all collected;Until all collected;

15
15

Communication & Strategy
• An incumbent solution allows to prune nodes with larger LP

solution value in all sub-problems.
• Hence communicate a newly found incumbent to all sub-

problems
– Sub-problems not started: Start with a cutoffcutoff
– Running sub-problems: Update the cutoff cutoff with a

GAMS/CPLEX option file that is read while running

• Strategy:
– Have one machine working on good solutions (e.g.

CPLEX mipemphasismipemphasis 1 1 or 44) using original problem
– Sub-problems emphasize on best-bound (e.g. CPLEX

mipemphasismipemphasis 33)

16
16

Testing MIPLIB2003 Instances

17
17

Some results

Over nightOver nightOver nightOver nightOver nightOver nightWall timeWall time

360h360h248h248h0.5h0.5hCPU time CPU time
wastedwasted

2384h2384h3432h3432h50h50hCPU time usedCPU time used

17,092,21517,092,2151,921,7361,921,736400,034400,034##CplexCplex B&B B&B
nodesnodes

1.10656e+061.10656e+0611768.211768.21289012890objectiveobjective

3320332010891089986986#sub#sub--problemsproblems

TIMTAB2*TIMTAB2*
* Added problem cuts* Added problem cuts

A1C1S1A1C1S1ROLL3000ROLL3000

18
18

Other Results
• Problem SWATH (TSP type problem)

+ sub-tour elimination cuts:

Sub-problems: 2598 (578 still outstanding)
Objective: 467.407
CPU time used: 6590h
CPU time wasted: 4995h
Nodes explored: 38,012,523

• Second Level Partitioning (subdivide one of the 578 outstanding
problems [a difficult one]):

Sub-problems: 702 (264 still outstanding)
CPU time used: 30600h (3.5 years!)
CPU time wasted: 46344h (5 years!)
Nodes explored: 752,713,119

19
19

Summary
• GAMS/CPLEX dumpoptdumpopt n n to find a-priori problem partition

of a MIP
• Using GAMS Grid Facilities, Condor, and GAMS/CPLEX to

generate, submit, and solve n sub-problems
• Communication of updated incumbent is essential
• Solved two previously unsolved problems (ROLL3000,

A1C1S1) from MIPLIB2003 over night (with few hundred
machines available)

• Brute force has it’s limits, but with some additional problem
specific knowledge (turned into problem specific cuts) one
more problem (TIMTAB2) could be solved over night.

• Some problem in MIPLIB3 will remain unsolved for a while

