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GAMS Development / GAMS Software

• Roots: Research project 
World Bank 1976

• Pioneer in Algebraic 
Modeling Systems
used for economic modeling

• Went commercial in 1987
• Offices in Washington, D.C 

and Cologne
• Professional software tool 

provider
• Operating in a segmented 

niche market
• Broad academic & 

commercial user base
and network
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Application* Areas:

*

* Illustrative examples in the GAMS Model Library

• Agricultural Economics
• Chemical Engineering
• Econometrics
• Environmental Economics
• Finance
• International Trade
• Macro Economics
• Management Science/OR
• Micro Economics

• Applied General Equilibrium
• Economic Development
• Energy
• Engineering
• Forestry
• Logistics
• Military
• Mathematics
• Physics
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GAMS at a Glance
General Algebraic Modeling System: 

Algebraic Modeling Language, 
Integrated Solver, Model 
Libraries, Connectivity- & 
Productivity Tools

Design Principles:
• Balanced mix of declarative and 

procedural elements
• Open architecture and interfaces 

to other systems
• Different layers with separation of: 

– model and data
– model and solution methods
– model and operating system
– model and interface
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System Overview

Connectivity Tools
• Uniform Data 

Exchange:
– ASCII 
– GDX (ODBC, 

SQL, XLS, XML)
• GDX Tools
• Data API
• Ext. programs

– EXCEL 
– MATLAB
– GNUPLOT, ...
– C, Delphi, ...

Solvers
LP-MIP-QCP-MIQCP-NLP-MINLP-CNS-
MCP-MPEC
MPSGE, global, and stochastic optimization

Productivity Tools
• Integrated Development 

Environment (IDE)
• Model Debugger and 

Profiler
• Model Libraries
• Data Browser
• Charting Engine
• Benchmarking
• Deployment System
• Quality Assurance and 

Testing

User Interfaces

GAMS Language Compiler
and Execution System

API/BatchInteractive

BARON, COIN, CONOPT, 
CPLEX, DECIS, DICOPT, 
KNITRO, LGO,MINOS, MOSEK, 
OQNLP, PATH, SNOPT, XA, 
XPRESS, …
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What’s New???
• Improvements on all frontiers

– Connectivity Tools
• Databases
• Spreadsheets
• Specialized Visualization Tools (e.g. VEDA)

– Productivity Tools
• IDE Improvements
• Charting Engine

– Interfaces
• Using GAMS from Application Environments

– Solver Interfacing
• Branch-and-Cut-and-Heuristic (BCH) Facility
• Grid Computing
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What is Grid Computing?

A pool of connected computers managed and
available as a common computing resource

• Effective sharing of CPU power

• Massive parallel task execution

• Scheduler handles management tasks

• E.g. Condor, Sun N6 Grid Engine, Globus

• Can be rented or owned in common

• Licensing & security issues
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Typical Application for GAMS

mymodel.solvelinkmymodel.solvelink=3;=3;
loop(scenarioloop(scenario,,
demand=demand=sdemand(scenariosdemand(scenario); cost=); cost=scost(scenarioscost(scenario););
solve solve mymodelmymodel min min objobj using using minlpminlp;;
h(scenarioh(scenario)=)=mymodel.handlemymodel.handle););

RepeatRepeat
loop(scenario$h(scenarioloop(scenario$h(scenario),),
if(handlestatus(h(scenarioif(handlestatus(h(scenario))=2,))=2,
mymodel.handlemymodel.handle==h(scenarioh(scenario); ); h(scenarioh(scenario)=0; )=0; 
execute_loadhandleexecute_loadhandle mymodelmymodel;;
report(scenarioreport(scenario)=)=var.lvar.l););

if(card(hif(card(h), execute 'sleep 1');), execute 'sleep 1');
until until card(hcard(h)=0 or )=0 or timeelapsedtimeelapsed > 100;> 100;

report(scenarioreport(scenario) = ) = var.lvar.l););report = report = var.lvar.l;;

demand=42; cost=14;demand=42; cost=14;

& Grid
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Massively Parallel MIP
• MIP/B&C Algorithm ideal to parallelize

– Master/Worker Paradigm (process nodes in 
parallel) 
• Software: FATCOP/Condor, BCP/PVM

– A-priori subdivision into n independent problems
• Seymour problem solved that way

– Open Pit Mining (openpit in GAMS Model library)
– Partitioning integer variables to subdivide 

model into into 4096 sub-problems
– Experiments (Ferris) at UW using Condor 

Pool
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Condor
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Results for 4096 MIPS on Condor Grid
• Submission started Jan 11,16:00
• All jobs submitted by Jan 11, 23:00
• All jobs returned by Jan 12, 12:40

– 20 hours wall time, 5000 CPU hours
– Peak number of CPU’s: 500
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Nodes                    Best    Cuts/Nodes                    Best    Cuts/
Node  Left  Objective  Node  Left  Objective  IInfIInf Integer Best Node Integer Best Node ItCntItCnt GapGap

0     0    29.6862    64           29.6862   1650     0    29.6862    64           29.6862   165
100    37    17.0000    14           25.0000  2230100    37    17.0000    14           25.0000  2230
200    70    21.8429    22           24.0000  4022200    70    21.8429    22           24.0000  4022

Problems with a-priori Partitioning
• 99% of sub-problems very easy to solve
• 1% (almost) as difficult as the original problem

• How can we find n sub-problems with similar (but reduced) 
level of difficulty?
– B&C Code keeps a list of open/unexplored nodes
– Problem-bounds of these open nodes represent 

partitioning of the original problem

• GAMS/CPLEX Option dumptreedumptree nn creates n bound files
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How difficult is a sub-problem?
• What is a good estimate for how difficult a sub-problem is?

– Look at the LP value of a sub-problem
• The smaller the LP value (assuming minimization)

the more difficult the sub-problem
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Putting it all together
Generate Generate nn subsub--problems using GAMS/CPLEX with problems using GAMS/CPLEX with dumpoptdumpopt n;n;

loop(loop(nn,,
load load nnth bound file;th bound file;
generate and submit generate and submit nnth subth sub--problemproblem

););

RepeatRepeat
loop(loop(nn$(not$(not collected),collected),

if (if (n n finished, finished, 
load load nnthth--solution and mark solution and mark nn as collected));as collected));

sleep some time;sleep some time;
Until all collected;Until all collected;
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Communication & Strategy
• An incumbent solution allows to prune nodes with larger LP 

solution value in all sub-problems.
• Hence communicate a newly found incumbent to all sub-

problems
– Sub-problems not started: Start with a cutoffcutoff
– Running sub-problems: Update the cutoff cutoff with a 

GAMS/CPLEX option file that is read while running

• Strategy:
– Have one machine working on good solutions (e.g. 

CPLEX mipemphasismipemphasis 1 1 or 44) using original problem
– Sub-problems emphasize on best-bound (e.g. CPLEX 

mipemphasismipemphasis 33)
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Testing MIPLIB2003 Instances
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Some results

Over nightOver nightOver nightOver nightOver nightOver nightWall timeWall time

360h360h248h248h0.5h0.5hCPU time CPU time 
wastedwasted

2384h2384h3432h3432h50h50hCPU time usedCPU time used

17,092,21517,092,2151,921,7361,921,736400,034400,034##CplexCplex B&B B&B 
nodesnodes

1.10656e+061.10656e+0611768.211768.21289012890objectiveobjective

3320332010891089986986#sub#sub--problemsproblems

TIMTAB2*TIMTAB2*
* Added problem cuts* Added problem cuts

A1C1S1A1C1S1ROLL3000ROLL3000
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Other Results
• Problem SWATH (TSP type problem) 

+ sub-tour elimination cuts:

Sub-problems: 2598 (578 still outstanding)
Objective: 467.407
CPU time used: 6590h
CPU time wasted: 4995h
Nodes explored: 38,012,523 

• Second Level Partitioning (subdivide one of the 578 outstanding 
problems [a difficult one]):

Sub-problems: 702 (264 still outstanding)
CPU time used: 30600h (3.5 years!)
CPU time wasted: 46344h (5 years!)
Nodes explored: 752,713,119
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Summary
• GAMS/CPLEX dumpoptdumpopt n n to find a-priori problem partition 

of a MIP
• Using GAMS Grid Facilities, Condor, and GAMS/CPLEX to 

generate, submit, and solve n sub-problems
• Communication of updated incumbent is essential
• Solved two previously unsolved problems (ROLL3000, 

A1C1S1) from MIPLIB2003 over night (with few hundred 
machines available)

• Brute force has it’s limits, but with some additional problem 
specific knowledge (turned into problem specific cuts) one 
more problem (TIMTAB2) could be solved over night.

• Some problem in MIPLIB3 will remain unsolved for a while


