

Solving Difficult MIP Problems using GAMS and Condor

Michael R. Bussieck MBussieck@gams.com

GAMS Software GmbH http://www.gams.de

Michael C. Ferris Ferris@cs.wisc.edu

University of Wisconsin-Madison http://www.cs.wisc.edu/~ferris/

EURO 2006 Reykjavik, Iceland, July 4, 2006

GAMS Development / GAMS Software

 Roots: Research project World Bank 1976 Pioneer in Algebraic Modeling Systems used for economic modeling 	
 Went commercial in 1987 Offices in Washington, D.C and Cologne 	 Professional software tool provider Operating in a segmented niche market Broad academic & commercial user base and network

Application* Areas:

- Agricultural Economics
- Chemical Engineering
- Econometrics
- Environmental Economics
- Finance
- International Trade
- Macro Economics
- Management Science/OR
- Micro Economics

- Applied General Equilibrium
- Economic Development
- Energy
- Engineering
- Forestry
- Logistics
- Military
- Mathematics
- Physics

GAMS at a Glance

General Algebraic Modeling System: Algebraic Modeling Language, Integrated Solver, Model Libraries, Connectivity- & Productivity Tools Design Principles:

- Balanced mix of declarative and procedural elements
- Open architecture and interfaces to other systems
- Different layers with separation of:
 - model and data
 - model and solution methods
 - model and operating system
 - model and interface

System Overview

What's New???

- Improvements on all frontiers
 - Connectivity Tools
 - Databases
 - Spreadsheets
 - Specialized Visualization Tools (e.g. VEDA)
 - Productivity Tools
 - IDE Improvements
 - Charting Engine
 - Interfaces
 - Using GAMS from Application Environments
 - Solver Interfacing
 - Branch-and-Cut-and-Heuristic (BCH) Facility
 - Grid Computing

What is Grid Computing?

A pool of connected computers managed and available as a common computing resource

- Effective sharing of CPU power
- Massive parallel task execution
- Scheduler handles management tasks
- E.g. Condor, Sun N6 Grid Engine, Globus
- Can be rented or owned in common
- Licensing & security issues

Typical Application for GAMS & Grid

```
mymodel.solvelink=3;
loop(scenario,
    demand=42@maodt=t4mario); cost=scost(scenario);
    solve mymodel min obj using minlp;
    report(=cwaariq) = var.l); ;
```

```
Repeat
loop(scenario$h(scenario),
    if(handlestatus(h(scenario))=2,
       mymodel.handle=h(scenario); h(scenario)=0;
       execute_loadhandle mymodel;
       report(scenario)=var.l);
    if(card(h), execute 'sleep 1');
until card(h)=0 or timeelapsed > 100;
```


Massively Parallel MIP

- MIP/B&C Algorithm ideal to parallelize
 - Master/Worker Paradigm (process nodes in parallel)
 - Software: FATCOP/Condor, BCP/PVM
 - A-priori subdivision into *n* independent problems
 - Seymour problem solved that way
 - Open Pit Mining (openpit in GAMS Model library)
 - Partitioning integer variables to subdivide model into into 4096 sub-problems
 - Experiments (Ferris) at UW using Condor Pool

Condor

Stable series: <u>Condor Version 6.6.11</u> released March 28nd, 2006 Development series: <u>Condor Version 6.7.20</u> released June 22th, 2006

Results for 4096 MIPS on Condor Grid

- Submission started Jan 11,16:00
- All jobs submitted by Jan 11, 23:00
- All jobs returned by Jan 12, 12:40
 - 20 hours wall time, 5000 CPU hours
 - Peak number of CPU's: 500

11

Problems with a-priori Partitioning

- 99% of sub-problems very easy to solve
- 1% (almost) as difficult as the original problem
- How can we find n sub-problems with similar (but reduced) level of difficulty?
 - B&C Code keeps a list of open/unexplored nodes
 - Problem-bounds of these open nodes represent partitioning of the original problem

	Nodes			Best	Cut	ts/		
Node	Left	Objective	IInf	Integer	Best	Node	ItCnt	Gap
0	0	29.6862	64		29	6862	165	
100	37	17.0000	14		25	.0000	2230	
200	70	21.8429	22		24	.0000	4022	

• GAMS/CPLEX Option dumptree n creates n bound files

How difficult is a sub-problem?

- What is a good estimate for how difficult a sub-problem is?
 - Look at the LP value of a sub-problem
 - The smaller the LP value (assuming minimization) the more difficult the sub-problem

Putting it all together

```
Generate n sub-problems using GAMS/CPLEX with dumpopt n;
loop(n,
   load nth bound file;
   generate and submit nth sub-problem
);
Repeat
   loop(n$(not collected),
      if (n finished,
        load nth-solution and mark n as collected));
   sleep some time;
Until all collected;
```


Communication & Strategy

- An incumbent solution allows to prune nodes with larger LP solution value in all sub-problems.
- Hence communicate a newly found incumbent to all subproblems
 - Sub-problems not started: Start with a cutoff
 - Running sub-problems: Update the cutoff with a GAMS/CPLEX option file that is read while running
- Strategy:
 - Have one machine working on good solutions (e.g.
 CPLEX mipemphasis 1 or 4) using original problem
 - Sub-problems emphasize on best-bound (e.g. CPLEX mipemphasis 3)

Testing MIPLIB2003 Instances

MIPLIB 2003 - Table of contents - Microsoft Internet Explorer															
Eile Eo	dit <u>V</u> iew F _é	<u>a</u> vorite	es <u>T</u> ools	<u>H</u> elp											-
G Bad	:k • 🕥 -	×	2 🏠	🔎 Sear	rch ☆ Fa	vorites	Ø	-	o · 📙 🛍	1	8				
Address 🕘 http://miplib.zib.de/miplib2003.php										*					
MIPLIB 2003 instance can be solved within an hour with a commercial solver instance has been solved optimal solution to instance is unknown															
/4UL8	🥥 🥥 optimal so	olution	to instance	: is unknow	'n										
Status	optimal so	olution C	to instance Rows	is unknow Cols	n NZ	Int	Bin	Con	Objective	1	2	3	4	5	6
Status	• optimal so • optimal so Name <u>10teams</u>	c C M	to instance Rows 230	is unknow Cols 2025	m NZ 12150	Int	Bin 1800	Con 225	Objective 924	1 ×	2 ×	3	4	5	6
Status	optimal so Name 10teams a1c1s1	C M M	to instance Rows 230 3312	is unknow Cols 2025 3648	m NZ 12150 10178	Int	Bin 1800 192	Con 225 3456	Objective 924 ?	1 ×	2 ×	3	4	5	6
Status	optimal so Name 10teams a1c1s1 aflow30a	C M M M	to instance Rows 230 3312 479	is unknow Cols 2025 3648 842	m NZ 12150 10178 2091	Int	Bin 1800 192 421	Con 225 3456 421	Objective 924 ? 1158	1 × ×	2 ×	3	4	5	6
Status • • •	optimal so Name 10teams a1c1s1 aflow30a aflow40b	C M M M M	to instance Rows 230 3312 479 1442	is unknow Cols 2025 3648 842 2728	m NZ 12150 10178 2091 6783	Int	Bin 1800 192 421 1364	Con 225 3456 421 1364	Objective 924 ? 1158 1168	1 × × ×	2 ×	3	4 × ×	5	6
Status • • • • • • • • • • • • •	optimal so Name 10teams a1c1s1 aflow30a aflow40b air04	C M M M M B	to instance Rows 230 3312 479 1442 823	is unknow 2025 3648 842 2728 8904	m NZ 12150 10178 2091 6783 72965	Int	Bin 1800 192 421 1364 8904	Con 225 3456 421 1364	Objective 924 ? 1158 1168 56137	1 × × × ×	2 ×	3	4 × ×	5	6
Status • • • • • • • • • • • • •	optimal so Name 10teams a1c1s1 aflow30a aflow40b air04 air05	C M M M B B	to instance Rows 230 3312 479 1442 823 426	e is unknow 2025 3648 842 2728 8904 7195	m NZ 12150 10178 2091 6783 72965 52121	Int	Bin 1800 192 421 1364 8904 7195	Con 225 3456 421 1364	Objective 924 ? 1158 1168 56137 26374	1 × × × ×	2	3	4 × ×	5	6
Status	optimal so Name 10teams a1c1s1 aflow30a aflow40b air04 air05 arki001	C M M M B B M	to instance Rows 230 3312 479 1442 823 426 1048	is unknow 2025 3648 842 2728 8904 7195 1388	m NZ 12150 10178 2091 6783 72965 52121 20439	Int 123	Bin 1800 192 421 1364 8904 7195 415	Con 225 3456 421 1364 850	Objective 924 ? 1158 1168 56137 26374 7.58081e+06	1 × × × × ×	2 × ×	3	4 × ×	5	6

Some results

	ROLL3000	A1C1S1	TIMTAB2* * Added problem cuts
#sub-problems	986	1089	3320
objective	12890	11768.2	1.10656e+06
#Cplex B&B nodes	400,034	1,921,736	17,092,215
CPU time used	50h	3432h	2384h
CPU time wasted	0.5h	248h	360h
Wall time	Over night	Over night	Over night

Other Results

Problem SWATH (TSP type problem)
 + sub-tour elimination cuts:

Sub-problems:2598 (578 still outstanding)Objective:467.407CPU time used:6590hCPU time wasted:4995hNodes explored:38,012,523

 Second Level Partitioning (subdivide one of the 578 outstanding problems [a *difficult* one]):

Sub-problems: CPU time used: CPU time wasted: Nodes explored: 702 (264 still outstanding) 30600h (3.5 years!) 46344h (5 years!) 752,713,119

Summary

- GAMS/CPLEX dumpopt n to find a-priori problem partition of a MIP
- Using GAMS Grid Facilities, Condor, and GAMS/CPLEX to generate, submit, and solve n sub-problems
- Communication of updated incumbent is essential
- Solved two previously unsolved problems (ROLL3000, A1C1S1) from MIPLIB2003 over night (with few hundred machines available)
- Brute force has it's limits, but with some additional problem specific knowledge (turned into problem specific cuts) one more problem (TIMTAB2) could be solved over night.
- Some problem in MIPLIB3 will remain unsolved for a while