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Overview

Algebraic Modeling Languages and GAMS
Dealing with uncertainty

Static Models: The Mean Variance Model
Dynamic Models (Stochastic Programming)

Summary
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GAMS Development Corp.
& GAMS Software GmbH

General Algebraic Modeling System 
Started as a research project
at the World Bank 1976
Went commercial in 1987
Professional software tool provider
Operating in a segmented niche market
Broad academic and commercial user base
Offices in Washington, D.C and Cologne
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Modeling Tools

Spreadsheets
General programming languages 

C++, Delphi, FORTRAN, Java, VBA, …
Algebraic Modeling Languages
Specialized software for certain applications
Mixture of different approaches
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What are Algebraic Modeling 
Languages?

Allow efficient handling of mathematical 
optimization problems

Goals:
Support the decision making process
Increase productivity during model building 
and solution process
Adapt models quickly to new situations
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Key Elements of 
Algebraic Modeling Languages

Declarative approach
Implementation of the optimization problem is close to its 
mathematical formulation:

Variables, constraints with arbitrary names
Sets, indices, algebraic expressions, powerful sparse index and 
data handling
Efficient but simple syntax

Model formulation contains no hints how to process the 
model Algebraic Modeling Language translates this 
representation into another form suitable for the 
optimization algorithm

Also procedural elements: Loops, procedures, 
macros, …
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GAMS Basic Principles

Balanced mix of declarative and procedural approaches
Separation of model and data: Core model is data 
independent and scalable
Separation of model and solution methods:

Multiple model types: LP, MIP, NLP, QCP, MIQCP, MINLP, MCP…
Maintained links to commercial and research algorithms (open solver 
interface)

Separation of model and operating system: Models are 
platform independent
Open architecture and interfaces to other systems: GUI, 
Excel, database, programming languages etc.
Maintainable models and protection of investments in 
models
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Typical GAMS Application Areas*

Agricultural Economics
Applied General Equilibrium
Chemical Engineering
Economic Development
Econometrics
Energy 
Environmental Economics
Engineering
Finance
Forestry
International Trade
Logistics
Macro Economics
Military
Management Science and OR
Mathematics
Micro Economics
Physics

* Illustrative examples in the GAMS Model Library
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Uncertainty in Finance

Very active area with significant contributions to 
modeling and with important practical applications
Some of the reasons:

Obvious impact of uncertainty 
Dealing with uncertainty = Risk Management (Basel II)
Real money“ - a small difference may mean a big 
advantage
High availability of data
Very competitive and liquid markets Many instruments 
and strategies
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Optimization Models in 
Finance

“Static” models: The decision is made once, no 
further changes possible

Mean-Variance Models
Portfolio Models for Fixed Income
Indexation Models (“Tracking Models”)

Scenario based Optimization

“Dynamic” models: Sequence of decisions
Stochastic Programming
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Mean-Variance Model

Markowitz (1952) Nobel prize 1990
Some investments xi with historical data:

Expected returns of investments: µi: 
Mean of historical returns
Risk: Variance of investments Qi,j

Goal: Balance risk r of portfolio against expected 
returns of portfolio
Minimize variance v of portfolio for a given target 
return r
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Mean-Variance Model
Equations

Algebraic Representation:
zdef..    v =g= sum((i,j), x(i)*q(i,j)*x(j));
rdef..  r =e= sum(i, mu(i)*x(i));
budget..  sum(i, x(i)) =e= 1;
x.lo(i) = 0;    # no borrowing
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Mean-Variance Model
Core GAMS Model

$eolcom #
Set    i    analyzed investments; alias (i,j) ;
Parameter  q(i,j) variance matrix;
Variables  v      variance of portfolio,

r      expected return for the portfolio,
x(i)   fraction of the portfolio that consists 

of i;
Equations zdef    variance of portfolio

rdef    expected return of portfolio
budget  budget constraint ;

zdef..    v =g= sum((i,j), x(i)*q(i,j)*x(j));
rdef..  r =e= sum(i, mu(i)*x(i));
budget..  sum(i, x(i)) =e= 1;
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Mean-Variance Model
Data

Set i / cn,fr,gr,jp,sw,uk,us    /;
Parameter  mu(i)/
cn  0.1287,  fr   0.1096,  gr  0.0501,   jp     0.1524,
sw  0.0763,  uk   0.1854,  us  0.0620                   /;
Table  q(i,j)

cn      fr      gr      jp      sw      uk      us
cn    42.18
fr    20.18   70.89
gr    10.88   21.58   25.51
jp     5.30   15.41    9.60   22.33
sw    12.32   23.24   22.63   10.32   30.01
uk    23.84   23.80   13.22   10.46   16.36   42.23
us    17.41   12.62    4.70    1.00    7.20    9.90   16.42 ;

q(i,j)$(ord(j) gt ord(i)) = q(j,i) ;
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Mean-Variance Model 
Procedural Elements

$include data.inc # get data from external file
x.lo(i) = 0;      # no borrowing 
Model var / all / ;
set p     points for efficient frontier /minv, p1*p8, maxr/,

pp(p) points used for loop          /      p1*p8      /;
parameter minr , maxr,         #minimal and maximal return

rep(p,*), repx(p,i); # some quick reports
solve var minimizing v using qcp ;#find portfolio with minimal variance
rep('minv','return')   = r.l; minr=r.l;
rep('minv','variance') = v.l; repx('minv',i) = x.l(i);
solve var maximizing r using qcp ; # find portfolio with maximal return
rep('maxr','return')   = r.l; maxr=r.l;
rep('maxr','variance') = v.l; repx('maxr',i) = x.l(i);
loop(pp,   # trace efficient frontier

r.fx = minr + (maxr-minr)/(card(pp)+1)*ord(pp);
solve var minimizing v using qcp ;
rep(pp,'return')   = r.l;
rep(pp,'variance') = v.l;
repx(pp,i)         = x.l(i);

);
display rep, repx;
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Mean-Variance Model 
Solution

Efficient Portfolios
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Mean-Variance Model
Extensions

Different risk attitudes:

xi may become negative Allowing 
borrowing (Short Sales)
Trading Restrictions (“Zero or Range“ –
Constraints) Mixed Integer Quadratic 
Problem
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Trading Restrictions- Data

Table bdata(i,pd) portfolio data and trading restrictions
*                       - increase - - decrease -

old umin    umax        lmin    lmax
cn     0.2      0.03    0.11        0.03    0.11
fr     0.2      0.04    0.10        0.04    0.10
gr     0.0      0.04    0.07        0.04    0.07
jp     0.0      0.03    0.11        0.03    0.11
sw     0.2      0.03    0.20        0.03    0.20
uk     0.2      0.03    0.10        0.03    0.10
us     0.2      0.03    0.10        0.03    0.10 

;
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Trading Restrictions –
Formulation

Variables xi(i)     fraction of portfolio increase
xd(i)     fraction of portfolio decrease
y(i)      binary switch for increasing current holdings of i
z(i)      binary switch for decreasing current holdings of i;

Binary Variables  y, z; 
Positive variables xi, xd;
Equations  xdef(i)    final portfolio definition,

maxinc(i)  bound of maximum lot increase of fraction of i,
mininc(i)  bound of minimum lot increase of fraction of i,
maxdec(i)  bound of maximum lot decrease of fraction of i,
mindec(i)  bound of minimum lot decrease of fraction of i,
binsum(i)  restrict use of binary variables;

xdef(i)..    x(i)   =e=  bdata(i,'old') - xd(i) + xi(i);
maxinc(i)..  xi(i)  =l=  bdata(i,'umax')* y(i);
mininc(i)..  xi(i)  =g=  bdata(i,'umin')* y(i);
maxdec(i)..  xd(i)  =l=  bdata(i,'lmax')* z(i);
mindec(i)..  xd(i)  =g=  bdata(i,'lmin')* z(i);
binsum(i)..  y(i) + z(i) =l= 1;
Model var2  /all/; Solve var2 minimizing v using miqcp ;
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Trading Restrictions –
Solution

EfficientPortfolios 
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Recent Developments

Support of codes, which take advantage of 
special problem structures:

Quadratic / Mixed Integer Quadratic 
Programming via Interior Point Methods / QP 
Simplex

Support of global optimization codes
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Stochastic Programming

Stochastic Programming models allow sequence of 
decisions
Elements:

Scenarios: 
Complete set of possible discrete realizations of the uncertain 
parameters with probabilities
Capture complex interactions between different uncertain parameters 
(risk factors)
What are “good scenarios”? 
How many scenarios are necessary?
How do we generate scenarios?

Stages: Decisions points. First stage decisions now, second stage 
decision (depending of the outcome of the first stage decision) after 
a certain period and so on
Recourse: Describes how decision variables can adept to the 
different outcomes of the random parameters at each stage
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A simple Scenario Tree
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Another Scenario Tree
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Stochastic Programming
Some Challenges

Domain specific knowledge
Impacts of uncertainty:

Does it make a difference and is it worth the effort?
How far can one get with a certain budget?

Development and Fall-Back Strategy? 
Data (availability and importance of certain and uncertain 
parameter) Generation of “good” scenarios and 
definition of stages
Interpretation and Presentation of Results
Maintenance of the system



26

Stochastic Programming 
Technical Challenges

Deterministic equivalent: Includes all 
scenarios and stages Size of  model 
explodes
Challenges (among others):

Programming and generation difficult
Solution may not be possible
Interpretation and validation of results
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Facing these (tech.) Challenges

1. How does GAMS support the modeling of 
Stochastic Programming Problems?

2. Some scenarios only differ slightly Can 
we reduce the number of scenarios?

3. Stochastic Programming Problems are 
structured How can we take advantage 
of specialized solution techniques for 
Stochastic Programming
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Stochastic Programming in 
GAMS

Support for huge problem instances: 64 Bit OS (PC) and 
Grid Computing (experimental)
Reliable and fast import and export of data and results
Visualization of results
New language elements might improve reliability of : 

Random distributions for some problem data
Special expressions and conventions for scenario trees and stages

Special sets for trees: Root, nodes, leafs,  ancestor and child relations; 
automated generation of trees
Connection of variables or constraints to certain stages: A variable or 
constraints is only active at a certain stage: x.stage(i)=1;
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Scenario Reduction

Goal: Find an 
approximation of the 
original scenario tree 
with less nodes
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Scenario Reduction
Steps

1. Write a the stochastic model including the 
full tree structure 

2. Pass the tree structure to SCENRED*
3. Reduce tree and reallocate probabilities
4. Import reduced  tree back to GAMS
5. Solve the model with the reduced tree 

structure
* SCENRED has been developed by Groewe-Kuska, Heitsch & Römisch, 

Humboldt-University Berlin, Germany
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Specialized Algorithms

OSL Stochastic Extensions (IBM): 
Solves n-stage stochastic linear 
programs with recourse
Nested Benders decomposition
Requires deterministic equivalent
representation of the problem, which may 
be huge but is solver independent
GAMS made substantial investment
producing a solver independent interface, 
but unfortunately the product is no longer 
supported by IBM
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Specialized Algorithms

DECIS (Infanger)
Solves two-stage stochastic
linear programs with recourse
Benders decomposition and
advanced importance sampling techniques
Requires additional information describing 
the uncertain elements of the core model in 
a form, which is not compatible with other 
solvers
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Specialized Algorithms

Main Problem: 
No uniform (solver independent) 
problem representation (both for the input 
and output)
Various approaches, not yet clear which 
standard will be adopted
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Summary

Large classes of problems can be solved
GAMS provides a powerful and flexible 
framework for these classes of models

Stochastic Programming still challenging and 
developing field
Limited application of Stochastic 
Programming in practice 
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